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Abstract

Proliferation of smartphones equipped with several on-board sensors
leveraged people-centric sensing. Human mobility, combined with the ad-
vanced computing and wireless communication capabilities available on
mobile devices, enables mobile crowdsensing and paves the way for a wide
range of novel applications. Through public involvement, crowdsensing
facilitates large scale sensing tasks through collective intelligence. Inher-
ent crowd mobility, on the other hand, offers ample opportunities such
as improving connectivity and coverage in a network. Mobile crowd may
even be employed to provide connectivity to an otherwise disconnected
network of sensor nodes and enable a crowd assisted network (CrAN).
However, dynamic conditions of the crowd also pose a challenge to the
quality of the collected data in terms of accuracy, latency, and integrity.
Moreover, sampled data can be manipulated by malicious people. In such
a case, the application will likely receive conflicting data from different
participants. Thus, a truth discovery model is required to resolve data
conflicts and determinine the sampled data in order to improve data qual-
ity. In this chapter, we focus on connectivity and data quality issues in
CrANs and present two novel approaches to maintain data quality while
ensuring network connectivity. We also define two define two different
metrics to assess the data quality, namely accuracy and integrity. Accu-
racy evaluates the disparity between the obtained data and the expected
data. Depending on the application, minor deviation from the expected
data may be acceptable especially if the sample values are incremental
(e.g. brightness obtained from a light sensor). On the other hand, certain
applications require precise measurements (e.g. directions obtained from
a gesture sensor) and we employ integrity metric for this case.
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1 Introduction

Ubiquity of various sensors on pervasive computing devices has enabled observ-
ing the physical world, real-time, with a plethora of sensors. Thanks to human
involvement, mobility which is inherent to human-accompanied devices makes
Mobile Crowd Sensing (MCS) possible. Smartphones, wearable devices, and
vehicular systems are some of the human-accompanied mobile devices with a
variety of on-board sensors as listed in Table 1. Wearables market is already
diversified with a dazzling array of products for various applications including
entertainment, fitness, medical, etc. More than 400 different wearable devices
are already available [1] to change the way we work, exercise, and interact. Ac-
cording to Gartner, the market trend indicates a 90 percent increase by 2021 in
the worldwide wearable device sales [2].

Table 1: Mobile devices equipped with sensors.
Sensor iPhone 8 [3] Samsung S8 [4] Garmin

Vı́voactive
3 [5]

Tesla
Model X [6]

GPS X X X X
Accelerometer X X X
Barometer X X X
Compass X X
Gyro X X

Proximity X X X
Ambient light X X X
Fingerprint X X
Thermometer X
Heart rate X X

Iris X
Hall X

Camera X X X
Microphone X X X

Radar X

In MCS, generated data is consumer-centric in the sense that a certain degree
of user participation is essential at different stages of the application. MCS
process can be defined as a series of steps: task allocation, sampling, and data
collection.

• Task allocation: In the first step, sensing tasks are defined and assigned
to participants. Depending on the application, the number of participants
may be crucial to provide a certain level of service quality. For instance,
while a single participant is sufficient to monitor the movement pattern
(i.e. transportation mode) of an individual for a personal health applica-
tion, the phenomena at a larger scale (e.g. traffic congestion monitoring)
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require collective sensing of many individuals. Considering the overhead
to be incurred to perform the assigned tasks and the privacy concerns due
to revealing sensitive information such as location, people can be reluctant
to participate to the system. Therefore, incentive mechanisms should be
applied to attract more participants.

• Sampling: During the sampling phase, environmental conditions are ob-
served through employed sensors. Sensors to be employed are subject to
the sensing context defined by the sensing task. Apart from the sensing
context, other requirements such as location, time, and the sampling rate
are defined by the sensing task. However, fulfillment of the task request is
contingent on the participant’s approval. A major concern in this phase
is the accuracy of the indicated value at the output of the employed sen-
sor(s). Due to the heterogeneity of devices, accuracy may vary between
sensors of different manufacturers. Besides, malicious participants may
send manipulated data deliberately without performing the actual task.

Based on the degree of the user involvement in the sampling phase, crowd-
sensing can be classified into two categories: participatory crowdsensing
and opportunistic crowdsensing. In the participatory sensing, user involve-
ment (participation) is explicit (i.e. human work is required to satisfy the
request). On the other hand, sensing tasks are automated and the data
is collected without active user involvement in the opportunistic sensing.
MCS can also be classified based on the data generation modes. Besides
sensors, MCS can also leverage user-contributed data from social networks.
However, this chapter focuses on the mobile sensing data.

• Data collection: In the last step, sensor readings are collected by the re-
mote server (i.e. data center). Different communication models can be
applied based on the wireless communication methods provided to the
MCS application by the participant. Note that, despite its availability,
participants may not opt to use cellular data (e.g. LTE) considering the
communication cost which needs to be covered by individuals and the
overhead on the battery. If long range wireless communication means
are provisioned, data can be forwarded to the remote server immediately.
Though, communication can be limited to WiFi or Bluetooth as well. In
such a case, despite progress in sampling, data collection will be post-
poned until the mobile device is connected to a network. Such limitations
introduce delay in data collection which may not be acceptable for some
MCS applications. Delay also occurs when the data collection frequency
is set lower than the sampling frequency in order to minimize the commu-
nication overhead.

User involvement in MCS not only pose challenges but also offers unprece-
dented opportunities. Unlike traditional sensor networks which require deploy-
ment of custom hardware, crowd-sensing applications leverage devices in sheer
numbers that are already deployed in the field. This not only avoids the de-
ployment cost of specialized sensing infrastructure but also minimizes the time
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required to launch the application. On the other hand, the control on the data
quality is rather limited. Two major concerns are the sparsity of participants
at a certain location on a given time, and the quality of the generated data
in terms of accuracy, integrity, and latency. Considering the fact that rational
users control mobile devices, selfish users may be reluctant to participate in
crowd sensing applications in order to conserve energy, storage and computing
resources. Furthermore, malicious users may generate fabricated data on pur-
pose. Therefore, new methods must be developed to assure a certain degree of
data quality while increasing the number of participants by applying incentive
mechanisms in conjunction.

MCS employs heterogeneous devices with diverse sensing capabilities, vari-
ous wireless communication standards, and different mobility models. Besides
mobile devices, MCS may also comprise stationary sensor nodes. In such a case,
mobile devices can be used to improve some of the network performance met-
rics such as connectivity and coverage. Network connectivity is a fundamental
issue that needs to be tackled in wireless networks and a major concern of this
chapter. If sensor nodes form a partitioned network, mobile devices in MCS
can be exploited to provide intermittent connectivity between sensor nodes and
the remote server. This is similar to MSNs which are intermittently connected
through Mobile Data Collectors (MDCs) [7, 8]. The resulting network model
is referred to as crowd assisted network (CrAN) and the mobile devices in the
network signifies corresponding participants. A sample CrAN can be found in
Fig. 1.

Node

Participant

Figure 1: A sensor network with 4 disconnected nodes. Sensor readings cannot be
delivered to the remote server due to the limited transmission range. Participants
offer intermittent connectivity for otherwise disconnected nodes and enable a crowd
assisted network.

This chapter discusses how public crowd can be exploited to intermittently
connect nodes in a partitioned network and enable a CrAN. First, we assume
a sensor network with disjoint nodes such that none of the nodes are reachable
from the rest of the network. Then we introduce humans to the network. Hu-
mans offer inherent mobility and the accompanying devices provide a means
of wireless communication. Humans, involved in the network, are regarded as
participants. Availability of wireless communication combined with inherent
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mobility enables employing participants as mobile data collectors. Participants
collect data from sensor nodes within their proximity and relay the collected data
to the remote server. This scheme provides intermittent connection to the nodes
so that the data sampled in the network can be forwarded to the remote server.
The resulting intermittently connected network is regarded as crowd-assisted
network. Considering the fact that the sampled data can be manipulated or
even fabricated by malicious people, we introduce malicious participants into
the network. Then we investigate data quality and define two different met-
rics, namely accuracy and integrity to evaluate the quality of the collected data.
In order to resolve data conflicts and determine the actual data that is most
likely sampled from individual sensors, we present two novel approaches based
on arithmetic average and frequency. Both approaches are evaluated in terms
of integrity and accuracy.

The rest of the chapter is organized as follows. We highlight the key dif-
ferences between wireless/mobile sensor networks and mobile crowd sensing in
Section 2. Connectivity and coverage issues in CrANs are discussed in Section 3.
Two different approaches to assess reliability of the collected data are presented
in Section 4. Proposed approaches are evaluated in Section 5. The chapter is
concluded and open issues are discussed in Section 6.

2 From Sensor Networks to MCS

Availability of low cost sensor nodes with wireless communication capabilities
has enabled wireless sensor networks (WSNs) comprising sensors in large quan-
tities to monitor an area of interest and track certain events or phenomena.
Mobile sensor networks (MSNs) have emerged with the deployment of mobile
sensors to take advantage of mobility and sensing at the same time. Unless
sensor nodes have inherent mobility capabilities, node mobility can be enabled
by attaching nodes to mobile robots [9] as well. Considering the limited on-
board batteries of the mobile nodes and excessive energy overhead of mobility
compared to other network activities such as messaging [10], mobility should be
limited and employed in a controlled manner upon needed to extend the life-
time of the mobile. There are several solutions where mobility is employed as
a means for optimizing the network performance in terms of connectivity [11],
coverage [12], and lifetime [13, 14]. Mobility is also exploited to tolerate node
failures [15].

Compared to sensor networks where energy is constrained and usually non-
rechargeable, mobile crowd sensing leverages human-accompanied devices such
as smartphones, wearables, and intelligent vehicles which are less restricted in
terms of power supply, computational power, communication capacity, memory,
and storage. Furthermore, such devices are maintained by users through charg-
ing as needed and they usually provide direct access to the internet. Since the
cost of ownership is addressed by its users, MCS is more cost-effective compared
to MSNs. Also, possibility of user involvement in large numbers offers a scal-
able and flexible solution that can be easily extended to cover across large areas.
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Financial cost of providing the same coverage with traditional sensor networks
in large areas renders the application infeasible. For instance, CO2 monitoring
application within the 5th ring in Beijing (about 900 km2), would require the
deployment of at least 90,000 sensor nodes and around 1,000,000 relay nodes
to maintain full area coverage and communication connectivity [16] which is
undesirable. On the other hand, it is possible to provide 90 percent coverage
for the same region by employing 6300 taxis [16].

In the MCS, mobility is inherently exploited through human mobility. This
avoids the high mobility cost that exists in MSNs which is much more compared
to the messaging cost [10] and therefore should be controlled carefully. In MCS,
on the other hand, human-companioned devices with sensing, localization, and
wireless communication capabilities collect samples whenever they are within
the pre-determined area to be monitored and report their readings to a remote
server to enable large-scale sensing tasks. Human mobility not only improves
coverage but also offers intermittent connectivity for otherwise disconnected
nodes as focused in this chapter.

Several advantages of MCSs exist over MSNs. The primary advantage is the
involvement of humans to cover the cost of devices, handle mobility, take care
of the communication cost, and maintain devices (e.g. recharging) to sustain
their operations. Millions of smart devices and intelligent vehicles already exist
and they are ready to be employed around the world. The second advantage
is the abundance of resources. Due to the limited form factor of the sensor
nodes, WSNs are limited in terms of computation, communication, and energy.
Most of the WSNs employ low-rate short range wireless technologies such as
IEEE 802.15.4 [17] to communicate within the network and thus network wide
collaboration is critical to sustain connectivity with the Base Station (BS) which
acts as a gateway between the network and the remote user. However, due to
the depletion of limited on-board batteries and the exposure of the nodes to
harsh environmental conditions, network can be subject to random node failures.
While some of the failures can be compensated with redundancy, failure of the
cut-vertex nodes renders the network partitioned. Such problems do not exist,
most of the times, for MCS applications since individuals have direct access
to the internet through one of the long range wireless communication methods
such as LTE [18] or WiFi.

MCS also poses several challenges that need to be addressed. Unlike tradi-
tional sensor networks where the number of nodes and their locations are known
in advance, controlling data quality is more challenging in MCS. Stability is a
major concern typically. The number of participants is expected to fluctuate
due to random user mobility. Eagerness to participate may also change based on
the actual condition of the device such as battery life and user preferences. Het-
erogeneity of devices is another challenge. In the ideal case, sensors are expected
to produce the same output for the same input. However, sensor readings for
the same environmental conditions can be different even for sensors from the
same manufacturer depending on the sensor calibration. Ambient conditions
surrounding the device and physical alignment with the phenomena to be mon-
itored may also impact the sensor accuracy adversely. Consider an application
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where ambient noise is to be monitored. Sensor readings will be subject to the
location of the device (e.g. hand, bag, pocket, etc.). Besides, some users may de-
liberately send false data to earn money without performing the assigned task.
Spatial redundancy is another issue which both poses a challenge and offers op-
portunities. On the one hand, duplicate data from multiple participants must
be eliminated. On the other hand, redundancy can be exploited to assess relia-
bility of the collected data. The idea is evaluating disparity in the data collected
from the same region by different participants. For a detailed discussion please
refer to Section 4. In any case, drastic measures must be taken accordingly to
address the mentioned challenges and ensure data quality in terms of accuracy,
latency, and integrity.

Another concern from the participants’ perspective is privacy. Collected data
may contain sensitive information. In general, sensor readings are tagged with
location and time. Moreover, collected data can be analyzed to reveal patterns
such as trajectories and extract sensitive information such as participants’ home
and office addresses [19]. Anonymization is an option to provide preservation.
Providing anonymity, on the other hand, may encourage users to send incorrect
data due to the complexity of taking action on anonymous users. Privacy in
MCSs is an open issue and new methods should be developed to ensure user
privacy at a certain level.

Besides the risk of privacy issues, users also consume their own resources for
data collection. The total cost of ownership includes the initial purchase price
of the device, maintenance (e.g. charging the device as needed), mobility cost,
and communication cost. To compensate the associated costs and improve par-
ticipation, incentive mechanisms should be developed. Otherwise users will be
reluctant to participate. Several incentive strategies exist which can be classi-
fied into entertainment, service, and money [20]. Besides such incentives, social
recognition can be another motivating factor for participation.

Some of the key features of MSNs and MCS are summarized in Table 2.

3 Connectivity and Coverage in CrANs, Chal-
lenges and Opportunities

Mobile crowd can be employed to provide intermittent connectivity to an other-
wise disconnected network of stationary sensor nodes and enable a CrAN. This
model offers unprecedented opportunities in network connectivity and cover-
age. In this section, we briefly describe the challenges regarding connectivity
and coverage in MSNs first and then discuss how these issues are addressed by
CrANs.

In MSNs, limited energy supplies on the nodes enforce limited transmission
range to minimise the communication overhead. Limited transmission range, on
the other hand, requires nodes to collaborate with each other in order to send
their data to the BS. Therefore, connectivity of the sensor nodes with the BS
must be maintained at all times in order to sustain network operations. How-
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Table 2: Some of the key differences between MSNs and MCS.
Mobile sensor networks Mobile crowd sensing

Operators Institutions. Individuals.
Network Homogeneous network

with a fixed network size.
Dynamic network with di-
verse devices.

Control Autonomous control with
a possible intervention.

User-controlled with lim-
ited or no access to the
hardware.

Maintenance Self-organizing. Energy
is limited and usually not
rechargeable.

User-maintained.

Mobility Limited autonomous
movement.

Inherent mobility with no
control.

Context Limited to the deployed
region and the employed
hardware.

Location and available
sensors may change.

Sampling and
Collection

Full control. User-dependent.

Scalability Good. Best.

ever, nodes may fail arbitrarily due to various reasons such as battery depletion,
hardware malfunction, or an external damage. Such failures may partition the
network into disjoint subsets if the failed nodes are cut-vertices. When a parti-
tion is isolated from the rest of the network, collected data within the partition
cannot be delivered to the BS and the sensing coverage drops drastically.

Several solutions exist in the literature which deals with the connectivity
restoration problem through employing mobility. To restore the connectivity of
a partition with the rest of the network, network topology should be adjusted
accordingly. Three of the most common approaches are as follows:

• Restructuring network topology through relocation of the existing mobile
nodes: Since mobility imposes significant energy cost on the limited bat-
teries of the nodes, movement distance should be minimized. In addition,
if the scope of the damage is too wide, determining the nodes to be relo-
cated and their final locations is another challenge.

• Deploying additional nodes between the partitions: In the second approach,
determining the minimum number of nodes to be introduced to ensure re-
covery is crucial. Multiple batches of deployment will be inevitable if
the number of deployed nodes is not sufficient to guarantee connectiv-
ity. Besides, a self-configuring scheme is required to determine movement
destinations of the nodes.

• Employing mobile data collectors: MDCs must be assigned to partitions
uniformly in such a way that the tour lengths of MDCs are minimized and
the load among MDCs are balanced..
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Intermittent 

connection

Sensor Node

Participant

(a) Participants enable LTE to for-
ward data obtained from sensor
nodes. Participants do not have to
collaborate and visit the BS since
they have direct internet access to
forward the collected data.

Intermittent 

connection

Sensor Node

Participant

Base Station

(b) Participants employ one of the
short range communication meth-
ods. Only the BS has direct in-
ternet access. Participants should
collaborate and visit the BS in or-
der to forward the collected data.

Figure 2

It can be noticed that all solutions pose certain challenges and the primary
challenge in MSNs is limited energy. While the first two approaches provide
a stable connection, the last one offers intermittent connectivity. Compared
to MSNs, we assume sensor nodes to be stationary in CrANs. Therefore, the
first approach is not applicable to CrANs. We also assume that additional
nodes will not be deployed between the existing nodes to connect them. Thus,
the second approach is not an option for CrANs. On the other hand, the last
solution is very similar to a CrAN. However, there are a few differences. First of
all, mobility is inherent to participants with no additional cost in a CrAN. We
also assume no control on the participants’ mobility pattern. Therefore, unlike
MSNs, we cannot optimize the movement path of a participant and balance the
overhead between participants. The lack of control on the mobility simplifies
the problem in CrANs. On the other hand, success of the data transmission
cannot be guaranteed due to the random mobility. Apparently, the number
of participants and the size of the application area for mobility is crucial on
the data delivery success. To demonstrate the correlation, we have evaluated
network connectivity in CrANs with varying number of participants. The details
and further discussion can be found in Section 5.

Despite limited energy supplies of MSNs, CrANs are less restricted in terms
of energy. First of all, most of the human-accompanied mobile devices have
higher energy capacity compared to tiny sensor nodes. Furthermore, they can
be easily recharged as needed. On the other hand, sensor networks often op-
erate unattended in environments where human intervention is limited. Thus,
recharging is not an option for MSNs typically. Also, the lack of control on
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the hardware and random human mobility render any mobility optimization
algorithm inapplicable. Collaboration in message passing, another challenge
inherent to MSNs, is not a case most of the times in CrANs. Such a collab-
oration is not imposed in CrANs since devices are equipped with long range
communication technologies such as LTE which provides direct access to the
rest of the world. Considering possible limitations on the employed communica-
tion method, we demonstrate a scenario where participants need to collaborate
in order to forward their data as illustrated in Fig. 2b. Despite its availabil-
ity, participants may not opt to leverage long range communication means and
impose limitations on available communication methods to be employed consid-
ering the communication overhead in terms of cost and energy. In the scenario
given in Fig. 2b, only low-rate short range wireless communication technologies
are assumed to be available for the CrAN. Therefore, participants are employed
as mobile data collectors to relay data from nodes to the BS. BS has direct
internet access and it is employed as a gateway between the network and the
remote server. This scheme requires participants to visit the BS periodically
in order to forward the collected data. Assuming limited or no control on the
mobility patterns of the participants, data collection rate will decline drastically
compared to the direct communication.

Reliability of the collected data is a major challenge in a CrAN. Malicious
participants may alter samples they obtain and send falsified data on purpose.
The situation can easily deteriorate further if participant collaboration is as-
sumed as in Fig. 2b. Note that, in collaboration networks, one malicious par-
ticipant has potential to manipulate other participants’ data while relaying. In
case of malicious participants, the data center will likely receive conflicting data
from different participants. If direct internet access is assumed as in Fig. 2a,
it can be possible to validate the data sampled from the corresponding sensor
node. We present two different approaches in Section 4 for data validation.
To demonstrate the correlation between the ratio of malicious participants and
the data quality, we have evaluated the proposed data validation approaches in
Section 5.

4 Approach

Due to sensor calibration or malicious participants, data center may receive
conflicting data from different participants. However, a certain level of data
reliability is essential in order to meet application-level objectives. Therefore,
we need a truth discovery model so that conflicting data can be resolved. In
this chapter, we consider a model where data is sampled by sensor nodes and
forwarded by participants. Sensor nodes are assumed to maintain high level of
accuracy such that individual nodes sustain producing the same output for the
same input. This provides repeatable measurements for the same environmental
conditions. In the proposed model, we assume a sample space to represent the
set of possible values that can be sampled from sensors. Each sensor node is
assumed to report ambient conditions denoted with a value randomly selected
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from the sample space. Different sensors may report different values, however,
we assume the sampled data to be invariant for individual sensors. As part
of the threat model, we assume malicious participants manipulating the actual
data obtained from sensors. Since participants are mobile, single malicious
participant may alter one or more sensors data depending on the trajectory.
Data center may receive true and false values for each sensor node. By analyzing
the set of values corresponding to different nodes, we aim to determine the true
value for each node by employing data validation methods.

In this section, we introduce two different data validation approaches, namely
Arithmetic Average based Data Validation (AADV) and Frequency based Data
Validation (FDV) to resolve conflicting data. By analyzing the collected data,
we can determinine the value that most likely sampled and improve data quality.
We consider the connectivity issue as well in Section 5. But, apart from that, we
introduce two different metrics, namely accuracy and integrity to evaluate data
quality. To clarify both metrics, let us consider two different scenarios where
light sensors and gesture sensors are employed to obtain ambient light informa-
tion and to detect gestures (e.g. left to right, up to down, etc.) respectively.
While precise measurements are required for the gesture sensor, some devia-
tion from the actual value may still be acceptable for the light sensor. Thus,
we classify sensors into two categories based on the reported data: incremental
and particular. Considering this classification we define accuracy and integrity
metrics to evaluate sensors generating incremental and particular samples re-
spectively. The details can be found in Section 5.

Considering privacy concerns, we assume anonymization of the participants.
Thus, data center does not collect information regarding participants. Data
center only collects sensor readings and the corresponding node id where the
data is sampled. Note that, samples of a sensor node may not be received by
the data center due to random mobility of the participants. On the other hand,
some nodes may be visited multiple times by the same participant or various
participants. The more the data is collected from a node, the more the chance
is available to determine the actual data. The ratio of malicious participants is
also crucial on the success of the data validation.

In the presented model, without loss of generality, five different values are
assumed in the sample space: A, B, C, D, and E as given in Table 3. Sample
space can represent both incremental and particular data such as very low, low,
medium, high, and very high for ambient light levels or left to right, right to left,
up to down, down to up, and wave for gesture directions. We assume participants
to have direct internet access to forward data and therefore no collaboration is
required between participants. AADV and FDV approaches are detailed next.

4.1 Arithmetic Average based Data Validation (AADV)

A set of conflicting data may be reported to the data center for the same node
due to various reasons such as malicious participants or the lack of sensor accu-
racy. To maintain data quality, we aim to resolve data conflict and determine
the actual data sampled by the corresponding nodes. Thus, characteristics of
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Table 3: Notations used in the algorithms.
ni Sensor node i ∈ N
Ri The set of data collected from ni

vj Sample j ∈ Ri

P The set of possible sensor data values: A, B, C, D, E.
S The set of actual data reported from corresponding nodes.
A The set of data determined by AADV for corresponding nodes.
F The set of data determined by FDV for corresponding nodes.

the obtained data set must be described. One approach is to pursue quantita-
tive methods and apply frequency analysis. The idea is evaluating the number
of occurrences of each data and reveal central tendency of the overall data set.
This approach enables representing the data set through a single value with
the most accuracy. One of the common measures of central tendency is the
mean value. While mean has various definitions depending on the context, we
consider arithmetic average in this approach. AADV, as the name suggests,
applies arithmetic average of the data reported for corresponding nodes. Since
numerical data is required for mean, each data in the sample space is mapped
to a numerical value starting from one and incremented by one. The algorithm
can be found in Algorithm 1.

Algorithm 1 AADV(N , R)

1: for i = {1, 2, . . . , |N |} do
2: Ri = getSensorReadings(ni)
3: if |Ri| == 0 then . No data from ni

4: continue
5: end if
6: sum = 0
7: counter = 0
8: for ∀vj ∈ Ri do
9: sum += vj

10: counter++
11: end for
12: Ai = sum/counter
13: end for

4.2 Frequency based Data Validation (FDV)

Mod is another popular measure of central tendency that can be applied to
identify a single value to represent the whole data set with the most accuracy.
The idea is employing probability density function to determine the data that
is most likely to be sampled from corresponding nodes. Thus, we evaluate how
frequently each data is reported. If the data appears more, its relative likelihood
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to be the actual data is assumed to be increased. FDV, considers mod of the
data reported for corresponding nodes and set the data that appears the most
as the validated data. The algorithm can be found in Algorithm 2.

Algorithm 2 FDV(N , R)

1: for i = {1, 2, . . . , |N |} do
2: Ri = getSensorReadings(ni)
3: if |Ri| == 0 then . No data from ni

4: continue
5: end if
6: counts[] = 0
7: for ∀vi ∈ Ri do
8: counts[ordinal(vi)]++
9: end for

10: max = 0
11: maxIndex = 0
12: for j = {1, 2, . . . , |P |} do
13: if counts[j] > max then
14: max = counts[j]
15: maxIndex = j
16: end if
17: end for
18: Fi = maxIndex
19: end for

5 Experimental Evaluation

This section explains the experiment setup, performance metrics and the ob-
tained results.

5.1 Experiment Setup

Efficiency and validity of the presented approaches are tested through simula-
tions. We have considered stationary sensor nodes to monitor the surrounding
physical phenomena and a remote server (i.e. data center) to collect and process
the data. The nodes are deployed randomly in such a way that none of the nodes
are reachable from the rest of the network. To provide intermittent connection
between the nodes and the data center, mobile devices are introduced into the
network. Mobile devices represent participants in the crowd and the result-
ing intermittently connected network is regarded as a crowd-assisted network
(CrAN). Random way point mobility model is applied to mobile devices.

We have varied the number of nodes (i.e. 4-10), the number of mobiles (i.e.
1-4), and the size of the application area (i.e. 200 meters × 200 meters - 500
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meters × 500 meters) during experiments. For each setup, experiments were
carried out 30 times and the average is reported for significance.

5.2 Performance Metrics

We have considered four different performance metrics for assessment.

• Connectivity : This metrics reveals the number of nodes that were able to
establish intermittent connection to the data center at least once. Higher
number of connected nodes denotes improved network coverage.

• Message Count : This metric indicates the total number of messages col-
lected from the network and successfully delivered to the data center.
Unlike the first metric, message count implies the duration of the network
connection.

• Accuracy : This metric evaluates the deviation from the expected value.
This metric is especially useful to assess data quality when sensors with
incremental sample values (e.g. brightness level obtained from ambient
light sensor) are employed.

• Integrity : This metric signifies whether the collected data is consistent
with the generated data. This metric does not tolerate deviation and
expects the same value with the actual data. This metric is essentially
useful when precise measurements are needed (e.g. directions obtained
from a gesture sensor).

Algorithm 3 elaborates how accuracy and integrity metrics are computed.

Algorithm 3 Evaluate Quality(S, A, F )

1: a = 0, v = 0
2: for i = {1, 2, . . . , |S|} do
3: if Si == Ai then
4: i++
5: else
6: v = |Si −Ai|
7: end if
8: end for
9: Accuracy = a/|N |, Integrity = v/|N |

5.3 Performance Results

Figs. 3 and 4 present the number of connected nodes with varying number of
participants and network size respectively. To observe the relation between the
network density and the network connectivity, the size of the application area
is varied between 200 meters × 200 meters and 500 meters × 500 meters. The
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number of sensor nodes is set to 10 in Fig. 3. As Fig. 3 suggests, network
connectivity improves when the number of participants is increased. This is
expected since participants follow a random movement pattern and introducing
additional participants into the network increases the chance of an encounter
with the sensor nodes.

Though, the size of the application area impacts the network connectivity
adversely. It can be observed from Fig. 3 that the network connectivity suffers in
networks with low node density especially with a single participant. The number
of connected nodes declines almost 55% when the size of the application area is
increased from 200 meters × 200 meters to 500 meters × 500 meters in a network
with one participant. On the other hand, for the same scenario, connectivity
drops 11% when 4 participants exist in the network. It can be concluded that
redundancy in mobility alleviates the adverse effects of the sparse networks.
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Figure 3: Network connectivity with respect to the number of participants and the
size of the monitored application area. The number of nodes is set to 10 while the
number of participants is varied between 1 and 4.

In Fig. 4, we employ a single participant and vary the number of nodes and
the size of the application area. The results are relative to the node count. Fig. 4
denotes that the number of connected nodes is proportional to the number of
nodes in the network even when the application area is varying in size. As
expected, network connectivity ratio improves when the network size declines.
This is due to the decreased average distance between the nodes which leads to
increased chance of visit by a participant.

Total number of messages successfully delivered to the data center are given
in Figs. 5 and 5 for varying number of participants and nodes respectively.
Figs. 5 reveals that the number of delivered messages increases when the num-
ber of participants increases. Size of the application area is inversely propor-
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Figure 4: Network connectivity with respect to the number of nodes and the size
of the monitored application area. The number of participants is set to 1 while the
number of nodes is varied between 4 and 10.

tional to the message count. This can be attributed to the increased average
distance between the nodes in sparse networks and the decreased probability of
participant-node encounter. As expected, the highest number of message count
is attained when the application area is set to 200 meters × 200 meters.

Figs. 6 suggests that the number of messages successfully delivered to the
data center increases with the increased node count. This is expected due to
the increased message count generated by the sensor nodes and the improved
likelihood of participant-node encounter considering the increased node density
when the size of the application area is fixed. On the other hand, improvement
in the message count diminishes in larger application areas. If the number of
nodes is increased from 4 to 10 when the size of the application area is set to
200 meters × 200 meters, message count increases 156%. On the other hand,
if the size of the application area is set to 500 meters × 500 meters then the
increase in the message count declines to 51%.

We evaluate accuracy and integrity of the collected data next. The number
of nodes is set to 10 and the number of participants is set to 4. The size of the
application area is 500 meters × 500 meters. We introduce the concept of ma-
licious participants for the rest of the experiments. Malicious participants are
assumed to always manipulate the data they collect from sensors and forward
the altered data to the data center. In the following experiments, we considered
a sample space with 5 possible values for the sensed data as given in Table 3. De-
pending on the application, sample space may denote incremental or particular
values as discussed earlier. We have employed AADV and FDV approaches to
resolve conflicting data and validate the data for corresponding nodes. Success
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Figure 5: The number of delivered messages with respect to the number of participants
and the size of the monitored application area. The number of sensor nodes is set to
10 while the number of participants is varied between 1 and 4.
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Figure 6: The number of delivered messages with respect to the number of nodes
and the size of the monitored application area. The number of participants is set to 1
while the number of nodes is varied between 4 and 10.

rates for the mentioned approaches are illustrated in Figs. 7 and 8 in terms of
accuracy and integrity respectively. Integrity evaluates whether the precise data
can be obtained. This metric is primarily useful when the data values are not
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incremental but particular. On the other hand, accuracy evaluates how close
the obtained data is to the original data. For instance, let us assume that the
original data is “very light”. In terms of integrity, there is no difference whether
the validated data is “light” or “heavy” and both will be marked as failure.
However, we assess the validated data based on its distance to the original value
in accuracy.
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Figure 7: Data accuracy ratio with respect to the number of malicious mobiles when
the number of mobiles is set to 4.

Fig. 7 denotes that both approaches perform worse when the malicious activ-
ity is increased. Both AADV and FDV provide almost 90% success in validating
the data when the number of malicious participants is 1. FDV performs bet-
ter initially but it is outperformed by AADV when the number of malicious
participants is 3 or more. The decline in the performance of the FDV can be
attributed to its working principle in validating the data. Recall that FDV
considers frequency of the collected data for validation. When the number of
honest participants is more than or equal to malicious participants, FDV per-
forms better. However, when the number of malicious participants is increased
further, frequency becomes misleading.

Fig. 8 demonstrates the results in terms of integrity of the collected data
when malicious participants exist in the network. Initially, FDV reaches a
success rate of 85% while AADV provides 71% integrity. However, performance
of the FDV declines rapidly and it is outperformed by AADV when the number
of malicious participants is more than the half of the total participants. If all
the participants are malicious, success rate drops to 0% for FDV. AADV, on
the other hand, provides 16% integrity.
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Figure 8: Data integrity ratio with respect to the number of malicious mobiles when
the number of mobiles is set to 4.

6 Conclusion and Future Issues

Availability of several sensors on ubiquitous devices such as smartphones, smart-
watches, and intelligent vehicles enabled large scale sensing tasks to be carried
out by public crowd. On the one hand, this sensing model avoids installation
of custom hardware and its maintenance. On the other hand, reliability of the
application is highly dependent on the participants. Considering inherent hu-
man mobility, participants provide ample opportunities to improve some of the
network performance metrics such as connectivity and coverage. Participants
may even be employed to provide connectivity to an otherwise disconnected
network of sensor nodes and enable a crowd assisted network. However, in the
best case, nodes can be intermittently connected with the data center due to
random mobility. Depending on the number of participants and their move-
ment trajectories, some of the nodes may never be able to send their data to
the data center. Therefore, the number of participants should be increased
through incentive mechanisms. Another major challenge is reliability of the
participants. In case of malicious participants, the sampled data can be altered.
Consequently, the data center will likely receive conflicting data from different
participants. In order to provide a certain level of reliability, data conflicts
must be resolved and the actual data must be identified. Considering malicious
participants, we defined two different metrics, namely accuracy and integrity in
order to assess the data quality. While accuracy metric evaluates the disparity
between the obtained value and the expected value, integrity metric expects the
exact value. Accuracy is useful when sensor data is incremental (e.g. brightness
obtained from a light sensor). Integrity, on the other hand, can be employed
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when precise measurement is required (e.g. directions obtained from a gesture
sensor). To resolve conflicting data, we present two novel approaches based on
arithmetic average and frequency considering the defined metrics.

Data quality in CrAN can be assessed in terms of accuracy, integrity, and
latency. In this chapter, we investigated accuracy and integrity metrics and we
are planning to consider latency as a future work. Latency is a major issue
when participants employ only low-rate short range wireless communication
means. In such a network, a base station must be present within the network to
provide internet connection. In order to deliver sampled data to the data center,
participants should visit the base station. This scheme introduces additional
delay for the data delivery. Another issue that warrants additional investigation
is the mobility model. Besides synthetic mobility models which simulate human
behavior, real traces can be obtained and considered in future studies.
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